(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(minus(x, y), z) → minus(x, plus(y, z))
minus(0, y) → 0
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
plus(0, y) → y
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(y, x))
zero(s(x)) → false
zero(0) → true
p(s(x)) → x
p(0) → 0
div(x, y) → quot(x, y, 0)
quot(s(x), s(y), z) → quot(minus(p(ack(0, x)), y), s(y), s(z))
quot(0, s(y), z) → z
ack(0, x) → s(x)
ack(0, x) → plus(x, s(0))
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(minus(x, y), z) → minus(x, plus(y, z))
minus(0', y) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
plus(0', y) → y
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(y, x))
zero(s(x)) → false
zero(0') → true
p(s(x)) → x
p(0') → 0'
div(x, y) → quot(x, y, 0')
quot(s(x), s(y), z) → quot(minus(p(ack(0', x)), y), s(y), s(z))
quot(0', s(y), z) → z
ack(0', x) → s(x)
ack(0', x) → plus(x, s(0'))
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
minus(minus(x, y), z) → minus(x, plus(y, z))
minus(0', y) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
plus(0', y) → y
plus(s(x), y) → plus(x, s(y))
plus(s(x), y) → s(plus(y, x))
zero(s(x)) → false
zero(0') → true
p(s(x)) → x
p(0') → 0'
div(x, y) → quot(x, y, 0')
quot(s(x), s(y), z) → quot(minus(p(ack(0', x)), y), s(y), s(z))
quot(0', s(y), z) → z
ack(0', x) → s(x)
ack(0', x) → plus(x, s(0'))
ack(s(x), 0') → ack(x, s(0'))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
plus,
quot,
ackThey will be analysed ascendingly in the following order:
plus < minus
minus < quot
plus < ack
ack < quot
(6) Obligation:
TRS:
Rules:
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
y,
x))
zero(
s(
x)) →
falsezero(
0') →
truep(
s(
x)) →
xp(
0') →
0'div(
x,
y) →
quot(
x,
y,
0')
quot(
s(
x),
s(
y),
z) →
quot(
minus(
p(
ack(
0',
x)),
y),
s(
y),
s(
z))
quot(
0',
s(
y),
z) →
zack(
0',
x) →
s(
x)
ack(
0',
x) →
plus(
x,
s(
0'))
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
plus, minus, quot, ack
They will be analysed ascendingly in the following order:
plus < minus
minus < quot
plus < ack
ack < quot
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n5_0,
b)), rt ∈ Ω(1 + n5
0)
Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
plus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) →RΩ(1)
plus(gen_0':s3_0(n5_0), s(gen_0':s3_0(b))) →IH
gen_0':s3_0(+(+(b, 1), c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
y,
x))
zero(
s(
x)) →
falsezero(
0') →
truep(
s(
x)) →
xp(
0') →
0'div(
x,
y) →
quot(
x,
y,
0')
quot(
s(
x),
s(
y),
z) →
quot(
minus(
p(
ack(
0',
x)),
y),
s(
y),
s(
z))
quot(
0',
s(
y),
z) →
zack(
0',
x) →
s(
x)
ack(
0',
x) →
plus(
x,
s(
0'))
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, quot, ack
They will be analysed ascendingly in the following order:
minus < quot
ack < quot
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n851_0),
gen_0':s3_0(
n851_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n851
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
minus(gen_0':s3_0(+(n851_0, 1)), gen_0':s3_0(+(n851_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n851_0), gen_0':s3_0(n851_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
y,
x))
zero(
s(
x)) →
falsezero(
0') →
truep(
s(
x)) →
xp(
0') →
0'div(
x,
y) →
quot(
x,
y,
0')
quot(
s(
x),
s(
y),
z) →
quot(
minus(
p(
ack(
0',
x)),
y),
s(
y),
s(
z))
quot(
0',
s(
y),
z) →
zack(
0',
x) →
s(
x)
ack(
0',
x) →
plus(
x,
s(
0'))
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n851_0), gen_0':s3_0(n851_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n8510)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
ack, quot
They will be analysed ascendingly in the following order:
ack < quot
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ack(
gen_0':s3_0(
1),
gen_0':s3_0(
+(
1,
n1297_0))) →
*4_0, rt ∈ Ω(n1297
0)
Induction Base:
ack(gen_0':s3_0(1), gen_0':s3_0(+(1, 0)))
Induction Step:
ack(gen_0':s3_0(1), gen_0':s3_0(+(1, +(n1297_0, 1)))) →RΩ(1)
ack(gen_0':s3_0(0), ack(s(gen_0':s3_0(0)), gen_0':s3_0(+(1, n1297_0)))) →IH
ack(gen_0':s3_0(0), *4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
y,
x))
zero(
s(
x)) →
falsezero(
0') →
truep(
s(
x)) →
xp(
0') →
0'div(
x,
y) →
quot(
x,
y,
0')
quot(
s(
x),
s(
y),
z) →
quot(
minus(
p(
ack(
0',
x)),
y),
s(
y),
s(
z))
quot(
0',
s(
y),
z) →
zack(
0',
x) →
s(
x)
ack(
0',
x) →
plus(
x,
s(
0'))
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n851_0), gen_0':s3_0(n851_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n8510)
ack(gen_0':s3_0(1), gen_0':s3_0(+(1, n1297_0))) → *4_0, rt ∈ Ω(n12970)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
quot
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(17) Obligation:
TRS:
Rules:
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
y,
x))
zero(
s(
x)) →
falsezero(
0') →
truep(
s(
x)) →
xp(
0') →
0'div(
x,
y) →
quot(
x,
y,
0')
quot(
s(
x),
s(
y),
z) →
quot(
minus(
p(
ack(
0',
x)),
y),
s(
y),
s(
z))
quot(
0',
s(
y),
z) →
zack(
0',
x) →
s(
x)
ack(
0',
x) →
plus(
x,
s(
0'))
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n851_0), gen_0':s3_0(n851_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n8510)
ack(gen_0':s3_0(1), gen_0':s3_0(+(1, n1297_0))) → *4_0, rt ∈ Ω(n12970)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
y,
x))
zero(
s(
x)) →
falsezero(
0') →
truep(
s(
x)) →
xp(
0') →
0'div(
x,
y) →
quot(
x,
y,
0')
quot(
s(
x),
s(
y),
z) →
quot(
minus(
p(
ack(
0',
x)),
y),
s(
y),
s(
z))
quot(
0',
s(
y),
z) →
zack(
0',
x) →
s(
x)
ack(
0',
x) →
plus(
x,
s(
0'))
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n851_0), gen_0':s3_0(n851_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n8510)
ack(gen_0':s3_0(1), gen_0':s3_0(+(1, n1297_0))) → *4_0, rt ∈ Ω(n12970)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
TRS:
Rules:
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
y,
x))
zero(
s(
x)) →
falsezero(
0') →
truep(
s(
x)) →
xp(
0') →
0'div(
x,
y) →
quot(
x,
y,
0')
quot(
s(
x),
s(
y),
z) →
quot(
minus(
p(
ack(
0',
x)),
y),
s(
y),
s(
z))
quot(
0',
s(
y),
z) →
zack(
0',
x) →
s(
x)
ack(
0',
x) →
plus(
x,
s(
0'))
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
minus(gen_0':s3_0(n851_0), gen_0':s3_0(n851_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n8510)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
minus(
minus(
x,
y),
z) →
minus(
x,
plus(
y,
z))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
plus(
x,
s(
y))
plus(
s(
x),
y) →
s(
plus(
y,
x))
zero(
s(
x)) →
falsezero(
0') →
truep(
s(
x)) →
xp(
0') →
0'div(
x,
y) →
quot(
x,
y,
0')
quot(
s(
x),
s(
y),
z) →
quot(
minus(
p(
ack(
0',
x)),
y),
s(
y),
s(
z))
quot(
0',
s(
y),
z) →
zack(
0',
x) →
s(
x)
ack(
0',
x) →
plus(
x,
s(
0'))
ack(
s(
x),
0') →
ack(
x,
s(
0'))
ack(
s(
x),
s(
y)) →
ack(
x,
ack(
s(
x),
y))
Types:
minus :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
zero :: 0':s → false:true
false :: false:true
true :: false:true
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
ack :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)